Тема цифровые фильтры обработки одномерных сигналов




Скачать 308,44 Kb.
НазваниеТема цифровые фильтры обработки одномерных сигналов
страница1/3
Дата публикации09.09.2013
Размер308,44 Kb.
ТипРеферат
pochit.ru > Математика > Реферат
  1   2   3




ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Digital signal processing.

Тема 2. ЦИФРОВЫЕ ФИЛЬТРЫ ОБРАБОТКИ ОДНОМЕРНЫХ СИГНАЛОВ.

Первый натиск и первые крики решают дело.

Тит Ливий. Римский историк, 59 г.д.н.э.-17 г.н.э.

Роль крика в драке - существенный вклад в теорию конфликтов. Но имеет ли он такое же значение при фильтрации данных - не очевидно, Лично я предпочитаю воплем завершать этот процесс, а не начинать.

Эдуард Павелко. Новосибирский геофизик Уральской школы, ХХ в.
Содержание

Введение.

1. Цифровые фильтры. Общие понятия. Основные достоинства цифровых фильтров. Нерекурсивные фильтры. Рекурсивные фильтры.

2. Импульсная реакция фильтров. Функция отклика. Определение импульсной реакции.

3. Передаточные функции фильтров. Z-преобразование. Устойчивость фильтров.

4. Частотные характеристики фильтров. Общие понятия. Основные свойства. Фазовая и групповая задержка. Корреляция входа и выхода фильтров. Области применения нерекурсивных и рекурсивных фильтров.

5. Структурные схемы цифровых фильтров. Структурные схемы. Графы фильтров. Соединения фильтров. Схемы реализации фильтров. Обращенные формы.

Введение

Задачей любого исследования является установление неизвестных свойств среды или отдельных конкретных объектов по данным наблюдения процессов, в них происходящих. Изучаемые объекты могут оказаться труднодоступными или вовсе недоступными для непосредственного изучения методами прямого контакта. Например, о строении земных недр на глубинах более 10-15 км мы можем судить исключительно по данным сейсмических волн и по характеристикам гравитационного и магнитного полей Земли. По этой причине разработка методов математической обработки и интерпретации результатов наблюдений, установления взаимосвязи между физическими свойствами природных сред и происходящих в них процессов, имеет большое значение.

Естественным введением в широкую и фундаментальную область цифровой обработки информации является цифровая фильтрация данных. Под фильтрацией будем понимать любое преобразование информации (сигналов, результатов наблюдений), при котором во входной последовательности обрабатываемых данных целенаправленно изменяются определенные соотношения (динамические или частотные) между различными компонентами этих данных.

Преобразование сигналов осуществляется в системах. Системы, избирательно меняющие форму сигналов (амплитудно-частотную и/или фазово-частотную характеристику), подавление шумов, устранение помех, извлечение из сигналов определенной информации, разделение сигналов на составляющие, и т.п. называют фильтрами. Фильтры с любым целевым назначением являются частным случаем систем преобразования сигналов.

К основным операциям фильтрации информации относят операции сглаживания, прогнозирования, дифференцирования, интегрирования и разделения сигналов, а также выделение информационных (полезных) сигналов и подавление шумов (помех). Основными методами цифровой фильтрации данных являются частотная селекция сигналов и оптимальная фильтрация.

В настоящем курсе рассматриваются, в основном, методы линейной обработки сигналов линейными дискретными системами. Линейными называют системы, которые осуществляют преобразование линейных комбинаций входных сигналов в суперпозицию выходных сигналов. Принцип реализации линейных систем, физический - в виде специальных микропроцессорных устройств, или алгоритмический - в виде программ на ЭВМ, существенного значения не имеет и определяет только их потенциальные возможности.

В общем случае термином ^ Цифровой фильтр (ЦФ) называют аппаратную или программную реализацию математического алгоритма, входом которого является цифровой сигнал, а выходом – другой цифровой сигнал с определенным образом модифицированной формой и/или амплитудной и фазовой характеристикой. Классификация цифровых фильтров обычно базируется на функциональных признаках алгоритмов цифровой фильтрации, согласно которому ЦФ подразделяются на 4 группы: фильтры частотной селекции, оптимальные (квазиоптимальные), адаптивные и эвристические. Наиболее изученными и опробованными на практике являются ЦФ частотной селекции.

^ 2.1. Цифровые фильтры [2, 24, 43].

Общие понятия. В одномерной дискретной линейной системе связь между входом и выходом (входной и выходной дискретными последовательностями значений сигнала – отсчетами), задается линейным оператором преобразования TL:

y(kt) = TL{x(kt)}.

Это выражение отображает краткую запись линейного разностного уравнения:

am y(kt-mt) =bn x(kt-nt), (2.1.1)

где k = 0, 1, 2, …- порядковый номер отсчетов, t - интервал дискретизации сигнала, am и bn - вещественные или комплексные коэффициенты. Положим a0 = 1, что всегда может быть выполнено соответствующей нормировкой уравнения (2.1.1), и, принимая в дальнейшем t = 1, т.е. переходя к числовой нумерации цифровых последовательностей значений сигналов, приведем его к виду:

y(k) = bn x(k-n) –am y(k-m). (2.1.2)

При k < n и m проведение фильтрации возможно только при задании начальных условий для точек x(-k), k = 1, 2, … , N, и y(-k), k = 1, 2, … , M. Как правило, в качестве начальных условий принимаются либо нулевые значения, либо выполняется продление отсчетов входных сигналов или его тренда по отрицательным значениям аргумента.

Оператор, представленный правой частью данного уравнения, получил название цифрового фильтра, а выполняемая им операция - цифровой фильтрации данных (информации, сигналов). Если хотя бы один из коэффициентов am или bn зависит от переменной k, то фильтр называется параметрическим, т.е. с переменными параметрами. Ниже мы будем рассматривать фильтры с постоянными коэффициентами (инвариантные по аргументу).

Основные достоинства цифровых фильтров по сравнению с аналоговыми.

  • Цифровые фильтры могут иметь параметры, реализация которых невозможна в аналоговых фильтрах, например, линейную фазовую характеристику.

  • ЦФ не требуют периодического контроля и калибровки, т.к. их работоспособность не зависит от дестабилизирующих факторов внешней среды, например, температуры.

  • Один фильтр может обрабатывать несколько входных каналов или сигналов.

  • Входные и выходные данные можно сохранять для последующего использования.

  • Точность цифровых фильтров ограничена только разрядностью отсчетов.

  • Фильтры могут использоваться при очень низких частотах и в большом диапазоне частот, для чего достаточно только изменять частоту дискретизации данных.

Нерекурсивные фильтры. При нулевых значениях коэффициентов am уравнение (2.1.2) переходит в уравнение линейной дискретной свертки функции x(k) с оператором bn:

y(k) = bn x(k-n). (2.1.3)

Значения выходных отсчетов свертки (2.1.3) для любого аргумента k определяются текущим и "прошлыми" значениями входных отсчетов. Такой фильтр называется нерекурсивным цифровым фильтром (НЦФ). Интервал суммирования по n получил название "окна" фильтра. Окно фильтра составляет N+1 отсчет, фильтр является односторонним каузальным, т.е. причинно обусловленным текущими и "прошлыми" значениями входного сигнала, и выходной сигнал не может опережать входного. Каузальный фильтр может быть реализован физически в реальном масштабе времени.

При обработке данных на ЭВМ ограничение по каузальности снимается. В программном распоряжении фильтра могут находиться как "прошлые", так и "будущие" значения входной последовательности отсчетов относительно текущей точки вычислений k, при этом уравнение (2.1.3) будет иметь вид:

y(k) =bn x(k-n). (2.1.4)

При N' = N фильтр называется двусторонним симметричным. Симметричные фильтры, в отличие от односторонних фильтров, не изменяют фазы обрабатываемого сигнала.

Так как реакция НЦФ на единичный входной импульс (а равно и на любой произвольный входной сигнал) всегда конечна и ограничена размером окна фильтра, такие фильтры называют также фильтрами с конечной импульсной характеристикой (КИХ-фильтры).

Техника выполнения фильтрации не отличается от техники выполнения обычной дискретной свертки двух массивов данных.

Представим, что на одной полоске бумаги выписаны по порядку сверху вниз значения данных x(k) ≡ sk (см. рис. 2.1.1). На второй полоске бумаги находятся записанные в обратном порядке значения коэффициентов фильтра bn ≡ hn (обозначение h для коэффициентов операторов НЦФ является общепринятым). Для вычисления yk ≡ y(k) располагаем вторую полоску против первой таким образом, чтобы значение h0 совпало со значением sk, перемножаем все значения hn с расположенными против них значениями sk-n, и суммируем все результаты перемножения. Результат суммирования является выходным значением сигнала yk. Сдвигаем окно фильтра - полоску коэффициентов hk, на один отсчет последовательности sk вниз (или массив sk сдвигаем на отсчет вверх) и вычисляем аналогично следующее значение выходного сигнала, и т.д.




Рис. 2.1.1. Нерекурсивный ЦФ.
Описанный процесс является основной операцией цифровой фильтрации, и называется сверткой в вещественной области массива данных с оператором фильтра. Для математического описания наряду с формулами (2.1.3-2.1.4) применяются символические формы записи фильтрации:

y(k) = b(n) * x(k-n)  b(n) x(k-n).

Сумма коэффициентов фильтра определяет коэффициент передачи (усиления) средних значений сигнала в окне фильтра и постоянной составляющей в целом по массиву данных (с учетом начальных и конечных условий). Как правило, сумма коэффициентов фильтра нормируется к 1.

Имеется целый ряд методов обработки данных, достаточно давно и широко известных, которые по существу относятся к методам цифровой фильтрации, хотя и не называются таковыми. Например, методы сглаживания отсчетов в скользящем окне постоянной длительности. Так, для линейного сглаживания данных по пяти точкам с одинаковыми весовыми коэффициентами используется формула:

yk = 0.2(xk-2+xk-1+xk+xk+1+xk+2).

С позиций цифровой фильтрации это не что иное, как двусторонний симметричный нерекурсивный цифровой фильтр:

yk =bn xk-n, bn = 0,2. (2.1.5)

Аналогично, при сглаживании данных методом наименьших квадратов (МНК) на основе кубического уравнения:

yk = (-3xk-2+12xk-1+17xk+12xk+1-3xk+2)/35. (2.1.6)

Это также НЦФ с коэффициентами: b0 = 17/35, b1 = b-1 = 12/35, b2 = b-2 = -3/35.

Пример. Уравнение НЦФ: yk =bn xk-n, bn = 0,2. Начальные условия - нулевые.

Входной сигнал – скачок функции (ступень): xk = {0,0,0,0,0,0,10,10,10,10,…}.

Выходной сигнал: yk = {0,0,0,0,2,4, 6, 8,10,10,10,10,…}.

Результат фильтрации приведен на рис. 2.1.2(А). Проверьте результат (выполните фильтрацию, как это показано на рис. 2.1.1, с учетом четности фильтра).




Рис. 2.1.2. Сглаживание МНК в скользящем окне по пяти точкам
Заметим: сумма коэффициентов сглаживающих НЦФ всегда должна быть равна 1, при этом сумма значений массива выходного сигнала равна сумме значений массива входного сигнала. Координатная детальность выходного сигнала ниже входного, резкие изменения входных сигналов "размазываются" по аргументу.

Повторите фильтрацию фильтром МНК на основе кубического уравнения. Сравните результаты фильтрации с результатами первого НЦФ (приведены на рис. 2.1.2(В)).

Для операции фильтрации характерны следующие основные свойства:

  • Дистрибутивность: h(n) ③ [a(k)+b(k)] = h(n) ③ a(k)+h(n) ③ b(k).

  • Коммутативность: h(n) ③ a(k) ③ b(k) = a(k) ③ b(k) ③ h(n).

  • Ассоциативность: [a(k) ③ b(k)] ③ h(n) = h(n) ③ a(k) ③ b(k).

Фильтрация однозначно определяет выходной сигнал y(k) для установленного значения входного сигнала s(k) при известном значении импульсного отклика фильтра h(n).




Рис. 2.1.3. Рекурсивный ЦФ.
Рекурсивные фильтры. Фильтры, которые описываются полным разностным уравнением (2.1.2)

y(k) = bn x(k-n) –am y(k-m),

принято называть рекурсивными цифровыми фильтрами (РЦФ), так как в вычислении текущих выходных значений участвуют не только входные данные, но и значения выходных данных фильтрации, вычисленные в предшествующих циклах расчетов. С учетом последнего фактора рекурсивные фильтры называют также фильтрами с обратной связью, положительной или отрицательной в зависимости от знака суммы коэффициентов am. Полное окно фильтра состоит из нерекурсивной части bn, ограниченной в работе текущими и "прошлыми" значениями входного сигнала (на ЭВМ возможно использование и “будущих” отсчетов сигнала) и рекурсивной части am, которая работает с "прошлыми" значениями выходного сигнала. Техника вычислений приведена на рис. 2.1.3.

Пример. Уравнение РЦФ: yk = boxk+a1yk-1, при bo = a1 = 0.5, y-1 = 0.

Входной сигнал: xk = {0,0,1,0,0,0,0,0,0,0,1,1,1,1,1....}

Расчет выходного сигнала:

уо = 0,5xo + 0,5y-1 = 0; y1 = 0,5x1 + 0,5yo =0; y2 = 0,5x2 + 0,5y1 = 0.5; y3 = 0,5x3 + 0,5y2 = 0.25;

y4 = 0,5x4 + 0,5y3 = 0.125; y5 = 0,5x5 + 0,5y4 = 0.0625; y6 = 0,5x6 + 0,5y5 = 0.03125; и т.д.

Выходной сигнал: yk = {0, 0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625,...}



Рис. 2.1.4. Рекурсивная фильтрация.

Из примера рекурсивной фильтрации на рис. 2.1.4 можно видеть, что реакция РЦФ на входной сигнал (например, на единичный импульс Кронекера в точке 2), в результате действия обратной связи, в принципе, может иметь бесконечную длительность (в данном случае с близкими к нулю, но не нулевыми значениями), в отличие от реакции НЦФ, которая ограничена количеством членов bk (окном фильтра). Фильтры такого типа называют фильтрами с бесконечной импульсной характеристикой (БИХ-фильтры). При положительной обратной связи (сумма коэффициентов am больше 1) фильтр становится неустойчивым (идет «в разнос» как на рис. 2.1.5)
  1   2   3

Похожие:

Тема цифровые фильтры обработки одномерных сигналов iconЦифровые процессоры обработки сигналов (Лекция)
Цпос) или их равнозначное название – цифровые сигнальные процессоры (цсп или просто сигнальные процессоры), англоязычное сокращение...
Тема цифровые фильтры обработки одномерных сигналов iconЦифровые фильтры (Лекция)
По виду импульсной характеристики цифровые фильтры делятся на два больших класса
Тема цифровые фильтры обработки одномерных сигналов iconТема нерекурсивные частотные цифровые фильтры недостаточно овладеть...
Общие сведения. Типы фильтров. Методика расчетов нерекурсивных цифровых фильтров. Фильтры с линейной фазовой характеристикой
Тема цифровые фильтры обработки одномерных сигналов iconВопросы к экзамену по дисциплине «Цифровые методы формирования и обработки сигналов в итс»

Тема цифровые фильтры обработки одномерных сигналов iconТема 10. Рекурсивные частотные цифровые фильтры благословен Господь,...
Рекурсивные фильтры нужны при обработке данных. Однако разрабатывать их трудно. Отсюда следует, что Всевышний фильтров не создавал,...
Тема цифровые фильтры обработки одномерных сигналов iconЗадачи и методы обработки сигналов зв. Основные виды устройств обработки....
Принципы действия устройств динамической обработки. Структурные схемы, переходные процессы
Тема цифровые фильтры обработки одномерных сигналов iconТема пространство и метрология сигналов физическая величина более...
Пространство сигналов. Множества сигналов. Линейное пространство сигналов. Норма сигналов. Метрика сигналов. Скалярное произведение...
Тема цифровые фильтры обработки одномерных сигналов icon6. микропроцессоры для цифровой обработки сигналов
МП. Значительная эффективность систем цос достигается за счет специализации мп. Мп, ориентированные на цос, получили название цифровых...
Тема цифровые фильтры обработки одномерных сигналов iconТема 12. Оптимальные линейные цифровые фильтры
Специалисты в науке подобны старателям. Стоит одному найти крупинку золота, как другие выроют в этом месте котлован. А тема оптимальности,...
Тема цифровые фильтры обработки одномерных сигналов iconКурсовая работа по курсу "Устройства приема и обработки сигналов"...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2019
контакты
pochit.ru
Главная страница