В. К. Хмелевской Международный университет природы, общества и человека "Дубна"




Скачать 152,56 Kb.
НазваниеВ. К. Хмелевской Международный университет природы, общества и человека "Дубна"
Дата публикации24.06.2013
Размер152,56 Kb.
ТипДокументы
pochit.ru > География > Документы
Геофизические методы исследования земной коры.

Часть 2

В.К.Хмелевской

Международный университет природы, общества и человека "Дубна"

1997 г.
6.4. Изучение техногенного физического загрязнения1

6.4.1. Природа техногенного физического загрязнения.
Техногенное физическое (его можно также называть энергетическим или полевым) загрязнение представляет собой присутствие в окружающей среде (литосфере, атмосфере и гидросфере) дополнительно к естественным геофизическим полям физических полей, создаваемых человеком в процессе реализации современных технологий. Такие физические поля носят название техногенных (или технологических).
Техногенное физическое загрязнение, наряду с другими видами загрязнения - химическим и биологическим, играет важную роль в формировании общей геоэкологической обстановки, поскольку оказывает влияние на процессы энергетического обмена живой и неживой природы, на функционирование живых организмов и может коренным образом изменять качество окружающей среды.
Техногенное физическое загрязнение наиболее характерно для территорий крупных городов, промышленных районов и других интенсивно используемых территорий. В пределах таких территорий, благодаря большому количеству производимой, преобразуемой и потребляемой энергии, возникает и устойчиво существует повышенный фон техногенных физических полей. Так, например, Москва в течение года производит в среднем 2,15*1017 Дж энергии, что соответствует реализации мощности в 6,82*103 МВт. Это превышает мощность Братской ГЭС (4,1*103 МВт) и сопоставимо с мощностью Красноярской ГЭС (6,0*103 МВт).
На рис. 6.4 представлена схема формирования общего техногенного загрязнения, одним из компонентов которого является рассматриваемое физическое загрязнение. Схема показывает, как техногенные физические поля, оказывая на окружающую среду энергетическое воздействие, вместе с химическими веществами и микроорганизмами способствуют формированию техногенного загрязнения, последствия которого проявляются в виде изменения геологической среды, деструкции (повреждения) инженерных объектов и физиологических нарушений в живых организмах.

Рис. 6.4. Формирование и последствия техногенного загрязнения среды
6.4.2. Виды техногенного физического загрязнения.
Техногенное физическое загрязнение вызывается опосредованным через искусственно создаваемые физические поля воздействием человека на окружающую среду. Техногенные физические поля, о которых идет речь, представляют собой своего рода " отходы " реализуемых технологий, побочные продукты функционирования промышленных и энергетических установок, горнопроходческих комплексов, используемых при разработке месторождений полезных ископаемых, средств наземного, подземного и воздушного транспорта, коммуникационных и электропередающих линий, строительных машин и механизмов, а также агрегатов и механизмов, обеспечивающих нормальные условия в жилых и производственных помещениях, бытовой техники.
Из всех видов техногенного физического загрязнения окружающей среды наиболее существенными с позиций оценки экологических последствий и наиболее часто встречающимися являются шумовое (акустическое), вибрационное (вынужденные механические колебания), тепловое, электрическое (блуждающие токи и атмосферное электричество), электромагнитное, а также радиационное, создаваемые полями соответствующей природы (табл. 6.1).
^ Шумовое, или акустическое, загрязнение среды относится к категории чисто экологических факторов (прямого экологического воздействия), поскольку оказывает непосредственное и исключительное воздействие на живые организмы. Основным и повсеместным источником шума является наземный (автомобильный и железнодорожный) транспорт, хотя и другие источники, такие как воздушный транспорт, промышленные предприятия, строительные машины и механизмы, вносят свой вклад в создание шумового поля. Уровень шума, создаваемый отдельными источниками (измеряется в децибелах (дБ) - относительных единицах, показывающих превышение звукового давления над пороговым значением этого параметра, составляющим 2*10-5 Па), может значительно превышать санитарный уровень, установленный для жилых и производственных помещений, школ и лечебных учреждений, как это видно из табл. 6.1.
При социологических опросах в городах шум в качестве раздражающего фактора фигурирует обычно приблизительно в 80% ответов опрашиваемых. Шум вблизи городских магистралей устойчиво держится примерно 15-18 часов в сутки, затухая лишь на короткое время ночью с 2 до 4 часов. С санитарно-гигиенических позиций нормальным (по градостроительной классификации - комфортным) считается акустический режим при уровне звука 10-65 дБ и максимально дискомфортным - при уровне звука выше 80 дБ. Для нервной системы человека вреден шум, превышающий 50-60 дБ (уровень звука обычного аудиоплейера достигает 60-70 дБ). При уровне звука 80-90 дБ (железная дорога и промышленные предприятия) возможны необратимые изменения в органах слуха, а при уровне 120-140 дБ (железная дорога, реактивные авиалайнеры) - повреждения этих органов.
Вибрация, или динамическое воздействие на среду, проявляется в виде поля вынужденных механических колебаний, которые воспринимаются и передаются ею от источников к различным объектам, в том числе и к объектам живой природы. Поле вибрации создается многочисленными и разнообразными источниками, наиболее значимыми из которых являются движущиеся транспортные средства, оборудование промышленных предприятий, строительные машины и механизмы, техническое оборудование зданий и инженерных сооружений. Поле вибрации можно квалифицировать как экологический фактор двойного действия - прямого, если речь идет о непосредственном контакте с виброгенерирующими объектами, например, при пользовании железнодорожным транспортом или при работе с ручными перфораторами, и опосредованного, если непосредственный контакт с создающим вибрацию объектом отсутствует, а вибрация воспринимается через передающую среду, например, при нахождении в зданиях, расположенных недалеко от железнодорожного пути или линий метрополитена неглубокого заложения, а также на стройплощадках. Основная часть колебательной энергии от виброгенерирующих объектов-источников переносится поверхностными волнами, распространяющимися в пределах верхней части грунтовой толщи (10-15 м). В силу этого в сфере воздействия поля вибрации оказываются фундаменты зданий и инженерных сооружений, многие коммуникации.
Вибрационное загрязнение, т.е. воздействие поля вибрации непосредственно на грунтовые массивы, может приводить к изменению рельефа поверхности, снижению механической прочности пород или, наоборот, к их уплотнению и улучшению прочностных характеристик. Длительное вибрационное воздействие способно вызывать или активизировать экзогенные геологические процессы, такие, например, как оползни и обвалы на крутых склонах, карст, проседание поверхности, образование полостей в насыпях на железнодорожных магистралях и т.п. При воздействии через грунтовые массивы на фундаменты зданий вибрация может причинять им серьезный урон. Так, при виброколебаниях со скоростью перемещения частиц грунта 0,4*10-3 - 1,2*10-3 м/с могут происходить сверхнормативные осадки фундаментов, возникать повреждения в старых зданиях, а при скорости 5*10-3 - 8*10-3 м/с возможны серьезные повреждения зданий с деревянными и бетонными перекрытиями.
Оценка вибрационного воздействия с экологических позиций показывает, что виброколебания с частотой до 20 Гц и амплитудой до 0,25*10-3 м (виброскорость до 0,01 м/c) хотя и ощутимы, но не вызывают неприятных последствий, которые имеют место при более высоких частотах и больших амплитудах. Так, при частотах 20-40 Гц и амплитудах 0,3*10-3 - 0,5*10-3 м (виброскорость до 0,04 м/c) вибрация оказывает раздражающее действие, вызывая неприятное и даже болезненное состояние организма. В табл. 6.1 показано соотношение указанных величин с параметрами поля вибрации, создаваемого различными источниками.
^ Тепловое загрязнение среды, вызываемое техногенным изменением температурного режима верхних слоев литосферы, в настоящее время представляет собой серьезную геоэкологическую проблему. Согласно прогнозам, уровень ежегодного прироста тепловой энергии в больших городах к 2000 году может достичь величины 1010 Дж/м2 .
Источниками теплового загрязнения могут служить горячие цеха и подземные газоходы металлургических предприятий, теплотрассы, сборные коллекторы, коммуникационные туннели и туннели метрополитена, обогреваемые подземные сооружения, а также сбросы горячих технологических вод в реки и открытые водоемы. С другой стороны, в качестве охладителей грунтовой толщи могут рассматриваться установки, используемые для промораживания слабых и плывунных грунтов при строительстве, подземные хранилища сжиженного газа. Оказываемое этими источниками тепловое воздействие может быть охарактеризовано данными, приводимыми в табл. 6.1.
Концентрация большого числа источников тепловой энергии в верхних частях литосферного пространства (например, под большими городами-мегаполисами) создает предпосылки формирования так называемых тепловых куполов - прогретых объемов геологического пространства, частично или полностью охватывающих своими контурами территории мегаполисов во многих районах земного шара. В пределах территорий крупных городов на небольших глубинах (10-30 м) формируются обширные геотермические аномалии с превышением температуры над фоновой на 6-10С.
В регионах с сезонно промерзающими грунтами прогрев скальных и дисперсных песчано-глинистых пород до температуры от 16-20 до 150-160С обычно не оказывает существенного влияния на их прочностные свойства, вызывая лишь повышение фильтрующей способности и уменьшение пластичности и влагоемкости. Вместе с тем даже при умеренном нагревании пород увеличивается их агрессивность по отношению к бетону, железобетону и металлу элементов конструкций, возрастает опасность химической и биохимической грунтовой коррозии.
В регионах, где распространены многолетнемерзлые породы, температура которых варьирует от -0,6 до -4,2С, даже небольшие флуктуации температуры (всего на 2-3С) в верхних частях грунтовой толщи могут приводить к заметным изменениям прочностных и деформационных свойств грунтов, ухудшению их несущей способности.
Искусственное промораживание грунтов при строительстве в сложных гидрогеологических условиях приводит к формированию временных криолитозон (массивов мерзлых пород) шириной до нескольких метров или десятков метров. По мере оттаивания после остановки процесса искусственного охлаждения грунтовый массив постепенно восстанавливает свои качественные характеристики. Однако в период удержания грунта в промороженном состоянии возможны нарушения сложившегося до начала заморозки режима водонасыщения, массо- и теплообмена. Не исключены также негативные реакции на холод со стороны растительного мира и мира микробных сообществ.
^ Тепловое воздействие и воздействие холодом на грунтовую толщу способствует проявлению таких экзогенных геологических процессов, как термопросадки, термокарст, солифлюкция и деградация многолетней мерзлоты (при тепловом воздействии), а также образование наледей, морозное пучение (при воздействии холодом). В данном случае тепловое воздействие может квалифицироваться как экзогенный (и техногенный) геологический фактор.
Реальные техногенные вариации температурных полей непосредственного влияния на человеческий организм не оказывают, и в этом смысле роль теплового загрязнения как экологического фактора относительно невелика. Экологические эффекты техногенного теплового загрязнения проявляются прежде всего в особенностях взаимодействия прогретого (или промороженного) грунта с растениями и микробными сообществами, для которых грунтовая толща является средой обитания. В этом выражается прямое экологическое действие фактора теплового загрязнения. В то же время негативные проявления экзогенных геологических процессов, вызываемых техногенными изменениями температурного режима, могут ухудшать условия жизни и работы людей и даже таить в себе опасность в случаях, например, возможного коррозионного повреждения тепло- и газопроводов, канализации и т.п., и в этом выражается роль теплового загрязнения в качестве экологического фактора опосредованного воздействия.
^ Электрическое загрязнение среды проявляется в формировании электрического поля блуждающих токов и в перенасыщении приземного слоя атмосферы ионами (аэроионами) разной полярности и в первую очередь положительными ионами тяжелых элементов. Источниками электрического загрязнения служат промышленные предприятия, электрифицированные железные дороги, станции катодной противокоррозионной защиты. Характеристики техногенного электрического загрязнения приведены в табл. 6.1.
Воздействие блуждающих токов на различные материалы (как правило, металлы, железобетон и бетон) можно оценить по скорости электрокоррозии металла и по среднегодовым потерям несущей способности металлических и железобетонных конструкций, соотнесенных с напряженностью поля блуждающих токов. Напряженность электрического поля блуждающих токов, создаваемого различными источниками, варьирует в пределах от 10 до 1600 мВ/м, что зависит от источника, строения и состояния грунтовой толщи. При изменении напряженности поля блуждающих токов от 0,8 до 3,6 мВ/м скорость коррозии металла возрастает с 0,2 до 2,0 мм в год, а потери несущей способности металлических и железобетонных конструкций увеличиваются с 10 до 15% и с 5 до 8% соответственно. Электрическое загрязнение в виде поля блуждающих токов является опосредованно действующим экологическим фактором, поскольку прямого воздействия на живые организмы и на человека не оказывает, но способно вызывать негативные изменения коррозионной обстановки, что, в свою очередь, увеличивает степень вероятности повреждения с выходом из строя подземных коммуникаций (водопроводов, газопроводов, теплотрасс, канализации и т.п.).
Атмосферное электричество является важным экологическим фактором, поскольку ионизация воздуха - одно из непременных условий нормального развития высокоорганизованной живой материи. Ионизация воздуха предполагает, что некоторая, весьма незначительная, часть молекул газов, входящих в состав воздуха, несет положительный или отрицательный электрический заряд. В естественных условиях ионизация воздуха происходит под действием радиоактивного излучения Земли и космического и ультрафиолетового солнечного излучения. При этом на 1 м ^{2} земной поверхности приходится в среднем 6,7*109 элементарных зарядов, а в 1см3 воздуха содержится 500-700 пар ионов, среди которых преобладают положительные аэроионы. Для примера, московский воздух в 1 см3 содержит приблизительно 1500 аэроионов обоих знаков, воздух в Сочи - около 1800, а воздух Кисловодска - примерно 3700 аэроионов.
Преобладание в воздухе ионов того или иного знака и их количественное соотношение имеет большое значение для органической жизни. Соотношение количества положительных и отрицательных аэроионов измеряется коэффициентом униполярности , где - число ионов разной полярности. Чем больше величина коэффициента униполярности, т.е. чем значительнее преобладание положительных аэроионов над отрицательными, тем менее благоприятными оказываются условия для существования живых организмов, что в первую очередь относится к человеку. Экспериментально установлено, что отрицательные аэроионы (в основном это ионы кислорода) благоприятно влияют на жизнедеятельность органического мира, тогда как положительные аэроионы в большинстве случаев оказывают негативное воздействие на биоту, а в больших концентрациях способны приносить вред. В нормальных условиях коэффициент униполярности 1,20. Превышение этой величины свидетельствует о неблагоприятности экологического состояния приземного слоя атмосферы. Загрязнение воздуха пылью, копотью, дымом, а также увеличение влажности воздуха уменьшают подвижность отрицательных аэроионов при сохранении подвижности положительных аэроионов. Наблюдения показывают, что в городском воздухе, особенно это заметно в пределах промышленных зон, концентрация тяжелых положительных аэроионов значительно выше, чем в пригородных лесных массивах и на территориях парков и зон отдыха в пределах городской черты. Таким образом, избыточное количество положительных аэроионов в воздухе, в большинстве случаев техногенного происхождения, может квалифицироваться как техногенное электрическое загрязнение среды и рассматриваться в качестве экологического фактора прямого действия.
^ Электромагнитное загрязнение представляет собой весьма биологически активный экологический фактор прямого воздействия. Причиной возникновения электромагнитного загрязнения является электромагнитное излучение промышленной частоты (50 и 400 Гц), а также излучение в радиочастотном диапазоне (0,100 МГц - 300 ГГц). Источниками электромагнитных полей промышленной частоты могут служить так называемые передаточные шины (общие токовые проводники) высоковольтных электрических трансформаторных подстанций, токонесущие провода воздушных линий электропередачи (ЛЭП), тяговые электромоторы и энергетические установки. Источники электромагнитных полей в диапазоне радиоволн - это антенны радиовещательных и телепередающих станций, излучатели специальных средств связи и радиолокационных станций, а также многие промышленные установки, лабораторные приборы и бытовая техника. Экологическое (физиологическое) воздействие электромагнитных полей на биоту и, в частности, на организм человека обуславливается индуцированными токами, текущими через живые ткани, и индуктивным взаимодействием внешних полей с собственными электромагнитными полями, генерируемыми живыми организмами. Уровень воздействия определяется напряженностью поля, продолжительностью воздействия и состоянием подвергающегося воздействию организма. Параметры, характеризующие электромагнитное загрязнение, приведены в табл. 6.1.
Электромагнитное загрязнение и обусловленное им систематическое и продолжительное воздействие интенсивных электромагнитных полей на человеческий организм может приводить к негативным последствиям. Здоровый организм способен успешно сопротивляться внешнему воздействию энергии электромагнитных полей. Однако в тех случаях, когда организм ослаблен, сопротивляемость его воздействию электромагнитных полей заметно падает. Даже если в организме при этом и не происходит патологических изменений, при длительном воздействии электромагнитного излучения у отдельных людей могут появляться признаки повышенной утомляемости, чувства апатии или, наоборот, повышенного беспокойства, другие отклонения от нормального состояния.
Реальная опасность электромагнитного облучения полем, создаваемым высоковольтными ЛЭП или энергетическими установками, существует в непосредственной близости от них, например, в пределах полосы шириной 60-90 м под линией электропередачи или в кабине электровоза. Радио- и телепередающие антенны и другие излучатели электромагнитного поля в радиоволновом диапазоне способны оказывать воздействие на живые организмы в пределах прямой видимости на расстоянии до нескольких десятков километров, что зависит от мощности и остроты диаграммы направленности передающего устройства.
^ Радиационное загрязнение привлекает к себе наибольший интерес, поскольку представляет собой весьма опасный (в чем убеждает опыт нынешнего столетия) с экологических позиций фактор прямого воздействия на живые организмы. Источниками естественного радиационного поля являются космические лучи и ионизирующее излучение природных радиоактивных веществ, содержащихся в почве, горных породах и воде. К естественному радиационному фону добавляется создающее загрязнение техногенное ионизирующее излучение, поступающее в окружающую среду от новообразованных (создаваемых в процессе реализации промышленных технологий) радионуклидов, используемых строительных материалов, а также от складируемых отходов атомного производства и т.п.
Космическое излучение в связи с малой мощностью дозы (до 30 мР/год; 1 мР = 0,01 Зв) как экологический фактор играет второстепенную роль. Корпускулярное ионизирующее излучение ( -излучение и -излучение) земного, естественного и искусственного происхождения имеет ограниченный радиус действия (от нескольких сантиметров до нескольких метров) и по этой причине также играет незначительную роль в формировании радиоактивного загрязнения окружающей среды.
Существенным с экологических позиций фактором радиационного воздействия на все виды животного и растительного мира является ионизирующее электромагнитное -излучение, распространяющееся на большое расстояние и обладающее высокой проникающей способностью. Действие -излучения зависит от интенсивности источника излучения и от расстояния до него. Вблизи земной поверхности мощность дозы естественного ионизирующего излучения варьирует от 0,003 до 0,025 мР/ч. В условиях промышленно-городских агломераций этот фон может несколько увеличиваться за счет излучения строительных материалов (бутового и облицовочного камня, гранитного щебня и т.п.), используемого бытового газа и водопроводной воды. Однако суммарная, естественная и техногенная, мощность дозы излучения, как правило, не превышает в обычных условиях (если не происходит аварийных выбросов или утечек радиоактивных материалов) санитарных норм (см. табл. 6.1).
В то же время следует отметить, что при значительной интенсивности ионизирующее излучение оказывает на живые организмы вредное, а иногда и губительное воздействие. Превышение уровня излучения над фоновым и даже просто повышение естественного фона могут приводить к генетическим изменениям в живых организмах. Так, при мощности дозы в 0,09-0,21 Р/ч происходит замедление роста растений и уменьшается видовое разнообразие животного мира. При увеличении мощности дозы до 0,42-1,67 Р/ч растительность угнетается, легко поражается насекомыми и возбудителями болезней. Человеческий организм отличается особой чувствительностью к радиационному воздействию. Доза излучения в 400 Р приводит к тяжелой форме лучевой болезни, симптомы которой начинают проявляться уже при дозах облучения 25-100 Р. Даже при малых дозах хроническое воздействие радиоактивного загрязнения может приводить к негативным последствиям, которые обнаруживаются по прошествии большого количества времени. Для человека безопасной считается мощность дозы облучения 0,008-0,024 мР/ч (или 70-210 мР/год).
^ Техногенное физическое воздействие, степень вызываемого им физического загрязнения, а также создавшуюся экологическую обстановку и условия жизнедеятельности людей можно оценивать посредством деления всего диапазона изменения условий на четыре категории - слабое, умеренное, сильное и опасное воздействие; низкая, средняя, высокая и очень высокая степень загрязнения; экологическая норма, экологический риск, экологический кризис и экологическое бедствие; комфортные, дискомфортные, очень дискомфортные и опасные условия для жизнедеятельности людей. Для наглядности такое деление приведено в виде таблицы (табл. 6.2), где также показана градация вызываемых физическим загрязнением изменений состояния человеческого организма от безусловного здоровья до патологии (болезни), коррелирующаяся с соответствующими оценочными геоэкологическими категориями.
В соответствии с приводимой таблицей к первой категории - слабому техногенному физическому воздействию (низкой степени техногенного физического загрязнения, экологической норме, комфортным условиям) - можно отнести такое воздействие, при котором не возникает ситуаций, выходящих за рамки естественных вариаций состояния окружающей среды и условий существования живых организмов, включая человека.
Ко второй категории - умеренному воздействию (средней степени загрязнения, экологическому риску, дискомфортным условиям) - следует относить воздействие такого уровня, при котором могут возникать заметные изменения окружающей среды и условий существования живых организмов, не требующие, однако, специальных мероприятий для устранения последствий этих изменений.
Третья категория - сильное воздействие (высокая степень загрязнения, экологический кризис, очень дискомфортные условия) - предполагает воздействие такого уровня, при котором возникающие в окружающей среде и условиях существования живых организмов изменения требуют специальных мероприятий, направленных на предотвращение негативных последствий воздействия.
Четвертая категория - опасное воздействие (очень высокая степень загрязнения, экологическое бедствие, опасные условия жизнедеятельности) - предполагает такой уровень воздействия, при котором возможны разрушительные и катастрофические изменения в окружающей среде, деградация и гибель представителей животного и растительного мира и в том числе патологические изменения в организме человека с самыми серьезными негативными последствиями.

Похожие:

В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconМ. М. Пришвин «золотой луг», «Лесная капель», «Календарь природы»(ответственность...
И. А. Бунин. «Антоновские яблоки»(близость человека к природе, подчинение быта крестьянским заботам)
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconСтруктура управления лицея «Дубна»
В основу совершенствования организации управления лицея «Дубна» заложена идея создания управляющей системы со своей структурой, которая...
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconПрограмма вступительного испытания по обществознанию для поступающих...
Общество как сложная динамическая система. Влияние человека на окружающую среду. Общество и природа. Правовая защита природы. Общество...
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" icon8. Познание и его формы
Опыт и теория. Понятие истинного знания. Познание и образование. Философские образы мира и человека. Формы постиже­ния бытия. Миф,...
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconУчебное пособие по курсу «Особенности россииского менеджмента» м...
Учебное пособие по курсу «Особенности россииского менеджмента» м международный университет бизнеса и управления, 2002 328 С
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconЧем больше деятельности, связанной с активным познанием природы,...
Важнейшей задачей поиска современной приоритетной модели является приведение содержания, методов и форм деятельности в соответствие...
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconЭкологическое право
Научно-методологической основой экологи­ческого права являются современные теоретиче­ские представления о взаимодействии человека,...
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconЕ. А. Тюгашев Новосибирский государственный университет
Всемирная Декларация Прав Животных [35], представлены общественности Декларации свободы дикой природы, прав живых существ, а также...
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconТемы для экзаменационных рефератов по обществознанию Основной вопрос...
Французский материализм XVIII века и его трактовка природы, человека и общества
В. К. Хмелевской Международный университет природы, общества и человека \"Дубна\" iconМетодическая разработка урока по естествознанию (5 класс)
Проблема взаимоотношений человека, природы и общества стояла всех этапах развития человечества, но особой остроты достигла на пороге...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2019
контакты
pochit.ru
Главная страница