Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО "инсолар-инвест" (Васильев Г.




НазваниеРуководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО "инсолар-инвест" (Васильев Г.
страница1/5
Дата публикации07.06.2013
Размер0,58 Mb.
ТипРуководство
pochit.ru > География > Руководство
  1   2   3   4   5
ПРАВИТЕЛЬСТВО МОСКВЫ
МОСКОМАРХИТЕКТУРА

Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии

РАЗРАБОТАНО ОАО "ИНСОЛАР-ИНВЕСТ" (Васильев Г.П., к.т.н., Председатель Совета директоров, руководитель темы; Хрустачев Л.В., зам. генерального директора; Розин А.Г., ведущий специалист; Абуев И.М., ст. научный сотрудник; Горнов В.Ф., инженер; Орлов В.О., д.т.н., ст. научный сотрудник; Воробьев Н.В., к. ф-м. н., научный сотрудник)
ПОДГОТОВЛЕНО к утверждению и изданию Управлением перспективного проектирования и нормативов Москомархитектуры (инж. Ионин В.А., Щипанов Ю.Б.)
УТВЕРЖДЕНО И ВВЕДЕНО В ДЕЙСТВИЕ указанием Москомархитектуры от 31.01.2001 г. № 8.

ВВЕДЕНИЕ
Рациональное использование топливно-энергетических ресурсов представляет собой одну из актуальных проблем. Одним из перспективных путей решения этой проблемы является применение новых энергосберегающих технологий и оборудования, использующих нетрадиционные источники энергии.

В качестве приоритетного направления более широкого использования нетрадиционных источников энергии наибольший интерес представляет область тепло-хладоснабжения, являющаяся сегодня одним из наиболее емких мировых потребителей топливно-энергетических ресурсов. Преимущества технологий тепло-хладоснабжения, использующих нетрадиционные источники энергии, в сравнении с их традиционными аналогами связаны не только со значительными сокращениями затрат энергии в системах жизнеобеспечения зданий и сооружений, но и с их экологической чистотой, а также новыми возможностями в области повышения степени автономности систем теплоснабжения. Представляется, что именно эти качества будут иметь определяющее значение в формировании конкурентной ситуации на рынке тепло-хладогенерирующего оборудования как в нашей стране, так и за рубежом.

Тепло-хладоснабжение с помощью тепловых насосов относится к области энергосберегающих экологически чистых технологий и получает все большее распространение в мире. Эта технология по заключению целого ряда авторитетных международных организаций, наряду с другими энергосберегающими технологиями (использование солнечной, ветровой энергии, энергии Океана и т.п.), относится к технологиям XXI века.

В общем случае тепловой насос - это устройство, используемое для обогрева и охлаждения. Он работает по принципу передачи тепловой энергии от холодной среды к более теплой, в то время как естественным путем тепло перетекает из теплой области в холодную (см. Рис. 1).

Рис. 1. Принципиальная схема работы компрессионного теплового насоса
Таким образом, тепловой насос заставляет двигаться тепло в обратном направлении. Например, при обогреве дома тепло забирается из более холодного внешнего источника и передается в дом. Для охлаждения (кондиционирования) дома тепло забирается из более теплого воздуха в доме и передается наружу. Тепловой насос в чем-то подобен обычному гидравлическому насосу, который перекачивает жидкость с нижнего уровня на верхний, тогда как в естественных условиях жидкость перетекает с верхнего уровня на нижний.

В основу принципа действия наиболее распространенных парокомпрессионных тепловых насосов положены два физических явления:

- поглощение и выделение тепла веществом при изменении агрегатного состояния - испарении и конденсации соответственно;

- изменение температуры испарения (и конденсации) при изменении давления.

Соответственно, основные элементы парокомпрессионного контура - теплообменник-испаритель, теплообменник-конденсатор, компрессор и дроссель. В испарителе рабочее тело, обычно хладон, находится под низким давлением и кипит при низкой температуре, поглощая теплоту низкопотенциального источника. Затем рабочее тело сжимается в компрессоре, приводимом в действие электрическим или иным двигателем, и поступает в конденсатор, где при высоком давлении конденсируется при более высокой температуре, отдавая теплоту испарения приемнику тепла, например, теплоносителю системы отопления. Из конденсатора рабочее тело через дроссель вновь поступает в испаритель, где его давление снижается и снова начинается процесс кипения.

Тепловой насос может забирать тепло из нескольких источников, например, воздуха, воды или земли. И таким же образом он может сбрасывать тепло в воздух, воду или землю. Более теплая среда, воспринимающая тепло, называется теплоприемником. В зависимости от типа источника и приемника тепла испаритель и конденсатор могут выполняться как теплообменники типа "воздух-жидкость", так и "жидкость-жидкость".

Регулирование работы систем теплоснабжения с применением теплового насоса в большинстве случаев производится его включением и выключением по сигналам датчика температуры, установленного в приемнике (при нагреве) или источнике (при охлаждении) тепла. Настройка теплового насоса обычно производится изменением сечения дросселя (терморегулирующего вентиля - ТРВ).

В зависимости от сочетания вида источника низкопотенциальной теплоты и нагреваемой среды тепловые насосы делятся на следующие типы:

- воздух - воздух;

- воздух - вода;

- грунт - воздух;

- грунт - вода;

- вода - воздух;

- вода - вода.

Эти типы тепловых насосов отличаются конструктивным исполнением теплообменной части (испарителя и конденсатора) и температурными режимами реализуемых термодинамических циклов.

Настоящее Руководство разработано ОАО "ИНСОЛАР-ИНВЕСТ" в развитие СНиП 2.04.05-91* "Отопление, вентиляция и кондиционирование" и МГСН 2.01-99 "Энергосбережение в зданиях" и освещает вопросы применения теплонасосных систем теплохладоснабжения (ТСТ), использующих вторичные энергетические ресурсы (ВЭР) и нетрадиционные возобновляемые источники энергии (НВИЭ).

Руководство имеет своей целью оказание помощи заказчикам и проектировщикам в выборе рациональных энергосберегающих технических решений систем тепло-хладоснабжения, предусматривающих применение тепловых насосов, и предназначено для использования при проектировании новых и реконструкции существующих объектов.

При разработке Руководства использован опыт применения тепловых насосов в зарубежной и отечественной практике, в частности опыт работы предприятий группы "ИНСОЛАР" по внедрению в России теплонасосных систем тепло-хладоснабжения в различных областях гражданского и промышленного строительства, включая результаты научно-исследовательских работ, выполненных ОАО "ИНСОЛАР-ИНВЕСТ" в рамках Государственной научно-технической программы России "Экологически чистая энергетика".
^ 1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. При проектировании систем тепло-хладоснабжения (отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения) зданий и сооружений с использованием тепловых насосов и тепловых узлов к ним следует руководствоваться следующими нормативными документами:

- СНиП 2.04.05-91* "Отопление, вентиляция и кондиционирование воздуха";

- СНиП 2.04.01-85* "Водоснабжение и канализация";

- СНиП 2.04.07-86* "Тепловые сети";

- МГСН 2.01-99 "Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению";

- СП 41-101-95 Свод правил "Проектирование тепловых пунктов",

а также другими нормативными документами федерального и регионального (московского) уровня, касающимися энергосбережения при проектировании объектов индивидуального и общественного жилищного строительства, объектов коммунального и промышленного строительства.

1.2. Термодинамически тепловой насос представляет собой обращенную холодильную машину и, по аналогии, содержит испаритель, конденсатор и контур, осуществляющий термодинамический цикл. Основные типы термодинамических циклов - абсорбционный и, наиболее распространенный, парокомпрессионный. Если в холодильной машине основной целью является производство холода путем отбора теплоты из какого-либо объема испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии. Термодинамический цикл теплового насоса в T-S диаграмме представлен на рисунке 2.

Рис. 2. Термодинамический цикл теплового насоса в T-S диаграмме
1.3. Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Коэффициент преобразования теплового насоса - отношение теплопроизводительности к электропотреблению - зависит от уровня температур в испарителе и конденсаторе и колеблется в различных системах в диапазоне от 2,5 до 5, т.е. на 1 кВт затраченной электрической энергии тепловой насос производит от 2,5 до 5 кВт тепловой энергии. Температурный уровень теплоснабжения от тепловых насосов 35-55 °С. Экономия энергетических ресурсов достигает 70%.

Промышленность технически развитых стран выпускает широкий ассортимент парокомпрессионных тепловых насосов тепловой мощностью от 5 до 1000 кВт.

На рисунке 3 представлены зависимости идеального и действительного (реального) коэффициента преобразования ТН от температур испарения и конденсации хладагента.

Рис. 3. Зависимость идеального и действительного (реального) коэффициента преобразования ТН от температур испарения и конденсации хладагента
1.4. Энергетический баланс ТН записывается следующим образом:

Qконд = Qисп + Lкомп, где

Qконд - теплота, отводимая от конденсатора;

Qисп - теплота, подводимая к испарителю;

Lкомп - работа компрессора.

1.5. Коэффициент преобразования ТН определяется по формуле:

 = Qконд / Lкомп =  · Tконд / (TкондTисп), где

Tконд - температура конденсации рабочего тела;

Tисп - температура испарения рабочего тела;

 - суммарный коэффициент потерь ТН (потери цикла, потери в компрессоре, потери от необратимости при теплопередаче и т.п.).

Идеальный коэффициент преобразования ТН:

 = Tконд / (TкондTисп).

1.6. Системы теплоснабжения с использованием тепловых насосов - теплонасосные системы теплоснабжения - могут быть применены для отопления, подогрева вентиляционного воздуха, нагрева воды для горячего водоснабжения и т.п.

В качестве низкопотенциальных (низкотемпературных) источников теплоты могут использоваться:

а) вторичные энергетические ресурсы:

- теплота вентиляционных выбросов;

- теплота серых канализационных стоков;

- сбросная теплота технологических процессов и т.п.

б) нетрадиционные возобновляемые источники энергии:

- теплота окружающего воздуха;

- теплота грунтовых и геотермальных вод;

- теплота водоемов и природных водных потоков;

- теплота солнечной энергии и т.п.;

- теплота поверхностных и более глубоких слоев грунта.

Следует учесть, что использование тепловых насосов для тепло-хладоснабжения с использованием ВЭР и НВИЭ представляет собой новую современную технологию и требует современных архитектурно-планировочных, конструктивных и инженерно-технологических решений по всему объекту в целом. ТСТ должна быть органично вписана в объект и рационально сопряжена с остальными инженерными системами объекта.
^ 2. КРАТКАЯ ХАРАКТЕРИСТИКА ВОЗМОЖНЫХ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОГО ПОТЕНЦИАЛА И ТЕХНОЛОГИЙ ИХ ИСПОЛЬЗОВАНИЯ В ТЕПЛОНАСОСНЫХ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ
2.1. Теплота окружающего воздуха

Теплота окружающего воздуха, как источника низкопотенциальной теплоты, характеризуется, как правило, сезонными и краткосрочными колебаниями температуры в зависимости от погодных условий, что влечет за собой колебания режимов работы теплового насоса, снижающие его эффективность. Кроме того, средний уровень температуры окружающего воздуха влияет на коэффициент трансформации: чем ниже температура, тем ниже коэффициент трансформации.

В этой связи теплоту окружающего воздуха целесообразно использовать в климатических зонах с достаточно высокой (не ниже +5 °С) температурой и со стабильными погодными условиями.

Для климатической зоны г. Москвы с колебаниями температуры воздуха в отопительный период от 0 °С до -30 °С, что определяется высокой циклонической деятельностью в этот период, применение этого низкопотенциального источника не целесообразно.
^ 2.2. Теплота грунтовых и подземных вод

Грунтовые и подземные воды обладают достаточно высокой теплоотдачей и имеют постоянную температуру, что обеспечивает эффективность и стабильность режимов работы тепловых насосов. Для утилизации теплоты создается циркуляционный контур: вода из грунта подается в теплообменник, связанный с испарителем теплового насоса, охлаждается и закачивается обратно в грунт (см. Рис. 4). Однако использование этих источников связано с более интенсивным вмешательством в гидрологический режим недр и требует согласования с соответствующими службами.

Рис. 4. Теплонасосная система теплоснабжения, использующая тепло подземных вод

1 - водонагреватель; 2 - тепловой насос; 3 - колодец; 4 - насос; 5 - дренаж
Следует также учесть, что использование грунтовых и подземных вод в качестве аккумулятора теплоты невозможно.

Подземные воды, так же как и поверхностные слои земли, могут быть использованы в качестве источника тепла для индивидуальных домов, многоквартирных зданий и районных котельных. Температура подземных вод обычно является постоянной на глубине 1520 м, и для Москвы и Московской области составляет 6-8 °С.

Для извлечения тепла подземных вод используются обычные методы бурения скважин диаметром 1020 см, глубиной 50-150 м. Как и при использовании озерной воды, применяются два различных принципа сбора тепла. В одном случае замкнутая трубопроводная система опускается в скважину. В таком коллекторе циркулирует теплоноситель, который извлекает тепло из подземной воды и переносит его в испаритель теплового насоса.

Для небольшого теплового насоса мощностью около 10 кВт, который может использоваться для индивидуальных домов, требуется расход подземного потока около 12 м3/ч (в зависимости от температуры).

В другом варианте подземная вода закачивается непосредственно в испаритель, и после охлаждения сбрасывается в специальную скважину, достаточно далеко от места забора, чтобы исключить охлаждение источника подземной воды.

При использовании грунтовых и подземных вод в качестве источника низкопотенциального тепла для ТСТ необходимо учитывать риск нарушения их гидрологического и экологического баланса.

Возможности использования тепловых насосов на грунтовых и подземных водах ограничены территориями, где температура этих вод меньше +4,5 °С.

В условиях достаточно плотной застройки в Москве применение таких методов проблематично, поскольку требует наличия подземного водного потока под площадкой или вблизи площадки застройки. Однако при изучении геологической подосновы следует иметь в виду такую возможность.
^ 2.3. Теплота водоемов и природных водных потоков

Температура воды в водоемах и водных потоках на поверхности земли подвержена сезонным изменениям в соответствии со средней температурой окружающего воздуха, причем наиболее низкая температура приходится на конец периода максимальной тепловой нагрузки. Утилизация низкопотенциальной теплоты производится теплообменниками, погруженными в воду. Использование этих естественных источников в качестве аккумуляторов теплоты невозможно. Однако специально созданные искусственные водоемы (например, противопожарные резервуары) можно использовать как тепловые аккумуляторы, предусмотрев при этом мероприятия от размножения водной флоры и фауны, чему могут способствовать периоды повышенной температуры воды.

Для условий Москвы представляет интерес использование теплоты многочисленных малых рек, заключенных в коллекторы. Этот вопрос следует рассматривать при проектировании конкретных объектов с учетом их территориального расположения. При этом следует оценить энергетический потенциал таких малых рек - величину стока воды и ее температуру в отопительный период.
  1   2   3   4   5

Похожие:

Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. icon“ Альтернативные источники энергии”
Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных...
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconТопливно-энергетических ресурсов в
К середине и к концу столетия потребление возобновляемых источников энергии несколько выросло, но их доля в общем объеме потребле­ния...
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. icon«Возможности энергоснабжения от возобновляемых источников энергии»

Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconТопливно-энергетический комплекс1 Производство и потребление топливно-энергетических ресурсов
1. Мировое потребление первичных источников энергии и его структура (млн т у т./%)
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconМаркетинговые исследования рынка вторичных ресурсов
Обзор рынка вторичных ресурсов Украины и стран ближнего зарубежья за период 2001 – 2003 годы
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconПоложение о порядке заключения, изменения и расторжения договоров снабжения тепловой энергией
Настоящее положение определяет порядок заключения, изменения и расторжения договоров теплоснабжения между ОАО «Зеленодольское предприятие...
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconТема Энергосбережение новый «источник» энергии
Мини-лекция; характеристика отдельных видов энергии учащимися; сообщения учащихся о нетрадиционных видах энергии
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconВ. В. Дыбок рабочие процессы, конструкция и основы расчета тепловых...
Изложены методические указания по в лабораторных работ по курсу «Рабочие процессы, конструкция и основы расчета тепловых двигателей...
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconЗадачи: совершенствование правовой базы, регулирующей вопросы использования...
«Совершенствование системы обращения с отходами производства и потребления и формирование кластера использования вторичных ресурсов...
Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии разработано ОАО \"инсолар-инвест\" (Васильев Г. iconКоммерческое предложение для жилых и промышленных зданий
Ооо «Зеленая миля» предлагает услуги по разработке проектов, монтажу и сервисному обслуживанию энергосберегающих отопительных систем...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2019
контакты
pochit.ru
Главная страница